Squeezing bio-capsules into a constriction: deformation till break-up
Author(s) -
Anne Le Goff,
Badr Kaoui,
Gaetan Kurzawa,
Boglárka Haszon,
AnneVirginie Salsac
Publication year - 2017
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/c7sm01417a
Subject(s) - constriction , deformation (meteorology) , chemistry , geology , materials science , composite material , biology , endocrinology
We study experimentally the deformation and break-up of liquid-filled capsules trapped at an axisymmetric step constriction, and subjected to increasing pressure drops. We considered biological (trout fish eggs) and bioartificial (made of ovalbumin and alginate) ones, with the objective to characterize the transition to break-up. We find that both capsule populations behave as a brittle material. They do not exhibit any plastic deformation prior to break-up. Moreover critical pressure drop exhibits a stochastic behavior as known for the fracture of disordered media. The break-up probability follows a three-parameter Weibull distribution, from which one can deduce the capsule rupture characteristics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom