z-logo
open-access-imgOpen Access
Silica/methacrylate class II hybrid: telomerisation vs. RAFT polymerisation
Author(s) -
Anthony L. B. Maçon,
Toshihiro Kasuga,
C. Remzi Becer,
Julian R. Jones
Publication year - 2017
Publication title -
polymer chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 117
eISSN - 1759-9962
pISSN - 1759-9954
DOI - 10.1039/c7py00516d
Subject(s) - raft , dispersity , methacrylate , polymerization , reversible addition−fragmentation chain transfer polymerization , polymer chemistry , refining (metallurgy) , chemistry , chemical engineering , radical polymerization , organic chemistry , polymer , engineering
Inorganic–organic co-networks prepared by a sol–gel method are a promising class of materials due to their unique physical and biological properties, especially when covalent bonds are formed between the networks. The polymer structure and composition can have a drastic effect on the synthesis and properties. Here, we compared reversible addition fragmentation chain-transfer (RAFT) with telomerisation (TL), for the synthesis of the polymer, to investigate whether refining the polydispersity of polymethacrylate could lead to better and more tailorable properties. 3-(Methoxysilyl)propyl methacrylate was used as a model and successfully synthesised by RAFT and TL using 2-cyano-2-propyl benzodithioate and thioglycerol as chain transfer agents, respectively. The polydispersity of the polymer had a significant effect on the sol–gel process with an increase in gelation time as the polydispersity decreased. Direct correlation was made between the gelation time and Mz, suggesting that the gelation of hybrids followed the percolation model. However, regarding the properties, it is a tie. No statistical difference in silica release and mechanical properties of the resulting hybrids was observed, regardless of the polydispersity of the polymer

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom