z-logo
open-access-imgOpen Access
The quasi-unchanged gas-phase molecular structures of the atmospheric aerosol precursor β-pinene and its oxidation product nopinone
Author(s) -
Elias M. Neeman,
Juan Ramón AvilésMoreno,
T. R. Huet
Publication year - 2017
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/c7cp01298e
Subject(s) - aerosol , pinene , gas phase , chemistry , phase (matter) , product (mathematics) , chemical engineering , organic chemistry , geometry , mathematics , engineering
The rotational spectra of the two bicyclic molecules β-pinene and its oxidation product nopinone were investigated in the gas phase, using Fourier transform microwave spectroscopy coupled to a supersonic jet, in the 2-20 GHz range. The parent species and all heavy atom isotopologues have been observed in their natural abundance. The spectroscopic parameters of the ground states were determined from a Watson's Hamiltonian in the A reduction. The rotational constants were used together with geometrical parameters obtained from ab initio calculations to determine the r 0 and r structures of the skeletons, without any structural assumption in the fit concerning the heavy atoms. Comparison with solid phase and other bicyclic monoterpenes unveiled an unprecedented complete set of geometrical parameters for the rigid cages. The structures of β-pinene and nopinone are very close, except for the substituents at C 2 . In the gas phase C 2 is a centre of planarity in both molecules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom