z-logo
open-access-imgOpen Access
Raman microspectroscopy for probing the impact of a dietary antioxidant on human breast cancer cells
Author(s) -
Paula Sofia Coutinho Medeiros,
Ana L. M. Batista de Carvalho,
C. Ruano,
Juan C. Otero,
M. Paula M. Marques
Publication year - 2016
Publication title -
food and function
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.145
H-Index - 76
eISSN - 2042-650X
pISSN - 2042-6496
DOI - 10.1039/c6fo00209a
Subject(s) - cancer , cancer cell , daidzein , breast cancer , oxidative stress , mcf 7 , isoflavones , cell , viability assay , chemistry , antioxidant , cancer research , human breast , biology , medicine , pathology , biochemistry , genistein
Breast cancer is the second most common type of cancer worldwide and the most frequent among women, being the fifth cause of death from neoplastic disease. Since this is an oxidative-stress related neoplasia, it is largely preventable. A dietary isoflavone abundant in soybean - daidzein - is currently being investigated owing to its chemopreventive and/or chemotherapeutic properties towards the human MDA-MB-231 (metastatic, estrogen-unresponsive) and MCF-7 (estrogen-responsive) breast cancer cell lines. Biological assays for evaluation of antitumour and anti-invasive activities were combined with state-of-the-art vibrational microspectroscopy techniques. At 50 and 100 μM concentrations and 48 h incubation time, daidzein was found to induce a marked decrease in cell viability (ca. 50%) for MDA-MB-231 and MCF-7 cells (respectively ca. 50% and 42%) and 40% inhibition of cell migration. MicroRaman analysis of fixed cells upon exposure to this isoflavone unveiled its metabolic impact on both cell lines. Multivariate data analysis (unsupervised PCA) led to a clear discrimination between the control and DAID-exposed cells, with distinctive effects on their biochemical profile, particularly regarding DNA, lipids and protein components, in a cell-dependent way. This is the first reported study on the impact of dietary antioxidants on cancer cells by microRaman techniques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom