z-logo
open-access-imgOpen Access
Biotransformation of 8:2 fluorotelomer alcohol by recombinant human cytochrome P450s, human liver microsomes and human liver cytosol
Author(s) -
Zhongmin Li,
LiangHong Guo,
Xiaomin Ren
Publication year - 2016
Publication title -
environmental science processes and impacts
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.128
H-Index - 98
eISSN - 2050-7895
pISSN - 2050-7887
DOI - 10.1039/c6em00071a
Subject(s) - biotransformation , microsome , human liver , cytosol , recombinant dna , cytochrome , biochemistry , chemistry , alcohol , enzyme , gene
Biotransformation of 8:2 fluorotelomer alcohol (8:2 FTOH) can form potentially more toxic metabolites. However, the responsible cytochrome P450 (CYP) isoform(s) and phase II metabolism have not been studied in humans. Here, we characterized the in vitro metabolism of 8:2 FTOH by recombinant human CYPs, human liver microsomes, and human liver cytosol. The results showed that among the 11 isoforms investigated, CYP2C19 was the only enzyme capable of catalyzing 8:2 FTOH with Km and Vmax values of 18.8 μM and 8.52 pmol min(-1) pmol(-1) P450, respectively. The phase I metabolite was identified as 8:2 fluorotelomer aldehyde (8:2 FTAL). HLMs also catalyzed 8:2 FTOH transformation, with the Vmax and intrinsic clearance (CLint) values similar to those of CYP2C19 after the protein content is taken into account. Molecular docking showed that the hydroxyl group of 8:2 FTOH accesses the heme iron-oxo of CYP2C19 in an energetically favored orientation. 8:2 FTOH was also transformed by phase II enzymes to form O-glucuronide and O-sulfate conjugates. The CLint values follow the order of sulfation > oxidation > glucuronidation, suggesting that conjugation is the major metabolic pathway, which explains the low yield of perfluoroalkyl acids (PFCAs). These results provide new insight into fluorotelomer alcohol biotransformation and indirect human exposure to PFCAs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom