Manganese-induced neurotoxicity: from C. elegans to humans
Author(s) -
Pan Chen,
Sudipta Chakraborty,
Tanara V. Peres,
Aaron B. Bowman,
Michael Aschner
Publication year - 2014
Publication title -
toxicology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.709
H-Index - 31
eISSN - 2045-4538
pISSN - 2045-452X
DOI - 10.1039/c4tx00127c
Subject(s) - neurotoxicity , manganese , toxicity , caenorhabditis elegans , mechanism (biology) , chemistry , transporter , microbiology and biotechnology , neuroscience , biology , pharmacology , biochemistry , gene , physics , organic chemistry , quantum mechanics
Manganese (Mn) is one of the most abundant metals on the earth. It is required for normal cellular activities, but overexposure leads to toxicity. Neurons are more susceptible to Mn-induced toxicity than other cells, and accumulation of Mn in the brain results in Manganism that presents with Parkinson's disease (PD)-like symptoms. In the last decade, a number of Mn transporters have been identified, which improves our understanding of Mn transport in and out of cells. However, the mechanism of Mn-induced neurotoxicity is only partially uncovered, with further research needed to explore the whole picture of Mn-induced toxicity. In this review, we will address recent progress in Mn-induced neurotoxicity from C. elegans to humans, and explore future directions that will help understand the mechanisms of its neurotoxicity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom