The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses
Author(s) -
Jian Zhou,
Dalaver H. Anjum,
Long Chen,
Xuezhu Xu,
Isaac Aguilar Ventura,
Long Jiang,
Gilles Lubineau
Publication year - 2014
Publication title -
journal of materials chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 128
eISSN - 2050-7534
pISSN - 2050-7526
DOI - 10.1039/c4tc01593b
Subject(s) - materials science , pedot:pss , microstructure , composite material , electrical resistivity and conductivity , nanotechnology , polymer , electrical engineering , engineering
Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) is a widely used conductive polymer in the field of flexible electronics. The ways its microstructure changes over a broad range of temperatures remain unclear. This paper describes microstructure changes at different temperatures and correlates the microstructure with its physical properties (mechanical and electrical). We used High-Angle Annular Dark-Field Scanning Electron Microscopy (HAADF-STEM) combined with electron energy loss spectroscopy (EELS) to determine the morphology and elemental atomic ratio of the film at different temperatures. These results together with the Atomic Force Microscopy (AFM) analysis provide the foundation for a model of how the temperature affects the microstructure of PEDOT/PSS. Moreover, dynamic mechanical analysis (DMA) and electrical characterization were performed to analyze the microstructure and physical property correlations
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom