z-logo
open-access-imgOpen Access
Benzothiadiazole – an excellent acceptor for indacenodithiophene based polymer solar cells
Author(s) -
Deyu Liu,
Liang Sun,
Zhengkun Du,
Manjun Xiao,
Chuantao Gu,
Ting Wang,
Shuguang Wen,
Mingliang Sun,
Renqiang Yang
Publication year - 2014
Publication title -
rsc advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.746
H-Index - 148
ISSN - 2046-2069
DOI - 10.1039/c4ra06967f
Subject(s) - terthiophene , acceptor , polymer , materials science , polymer chemistry , chemical engineering , photochemistry , chemistry , composite material , physics , engineering , condensed matter physics
Two tetradodeoxyphenyl-substituted indacenodithiophene (IDT) based polymers, PIDT3T and PIDTDTBT, were achieved by copolymerizing IDT with terthiophene (3T) or di-2-thienyl-2′,1′,3′-benzothiadiazole (DTBT). Although these two polymers show significantly different UV-vis absorption spectra and band gaps (2.08 eV and 1.75 eV), the HOMO levels (−5.35 eV and −5.30 eV) of these polymers are almost the same. Polymer solar cells (PSCs) based on polymers with the benzothiadiazole (BT) unit show relatively high short-circuit current density (Jsc) due to the relatively wide and high photo-electronic response and high hole mobility. Thanks to the four long aryl side chains on IDT, the polymer thin film shows an amorphous nature, and the AFM root-mean-square roughness (RMS) value of the polymer/PCBM blend film is only around 0.3 nm which can contribute to the homogenous bulk heterojunction structures without significant phase separation. Finally, decent power conversion efficiency (PCE) of 4.52% is achieved by the benzothiadiazole based polymer and PC71BM composite. By comparison study, we demonstrate why BT is an excellent acceptor unit for indacenodithiophene-based PSCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom