z-logo
open-access-imgOpen Access
A tunable submicro-optofluidic polymer filter based on guided-mode resonance
Author(s) -
Guohui Xiao,
Qiangzhong Zhu,
Yang Shen,
Kezheng Li,
Mingkai Liu,
Qiandong Zhuang,
Chongjun Jin
Publication year - 2015
Publication title -
nanoscale
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.038
H-Index - 224
eISSN - 2040-3372
pISSN - 2040-3364
DOI - 10.1039/c4nr07233b
Subject(s) - polymer , materials science , resonance (particle physics) , guided mode resonance , filter (signal processing) , mode (computer interface) , nanotechnology , optoelectronics , computer science , composite material , physics , grating , computer vision , diffraction grating , particle physics , operating system
Optical filters with reconfigurable spectral properties are highly desirable in a wide range of applications. We propose and experimentally demonstrate a tunable submicro-optofluidic polymer guided-mode resonance (PGMR) filter. The device is composed of a periodic grating sandwiched between a high index waveguide layer and a low index capping layer, which integrates submicro-fluidic channel arrays and a PGMR filter elegantly. A finite difference time domain (FDTD) method is employed to understand the spectral properties and determine appropriate device parameters. We fabricated the polymer guided-mode resonance filter with a method combining two-beam interference lithography, floating nanofilm transfer and thermal bonding techniques. Experimental results show that our tunable submicro-optofluidic PGMR filters can provide a broad spectral tuning range (13.181 nm), a narrow bandwidth (<2.504 nm), and a high reflection efficiency (>85%) in the visible region. Such submicro-optofluidic PGMR filters are highly compatible with existing nano/microfluidic technologies and would be valuable for the integrated flexible optical system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom