Protection from neurodegeneration in the 6-hydroxydopamine (6-OHDA) model of Parkinson's with novel 1-hydroxypyridin-2-one metal chelators
Author(s) -
David G. Workman,
Andrew Tsatsanis,
Frank W. Lewis,
John P. Boyle,
Maryam Mousadoust,
Nishani T. Hettiarachchi,
Michael Hunter,
Chris Peers,
David Tétard,
James A. Duce
Publication year - 2015
Publication title -
metallomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.012
H-Index - 75
eISSN - 1756-591X
pISSN - 1756-5901
DOI - 10.1039/c4mt00326h
Subject(s) - hydroxydopamine , neurodegeneration , parkinson's disease , chemistry , neuroscience , medicine , pharmacology , psychology , disease
Brain iron accumulation has been associated with inciting the generation of oxidative stress in a host of chronic neurological diseases, including Parkinson's disease. Using the catecholaminergic neurotoxin 6-hydroxydopamine to lesion cellular dopaminergic pathways as a model of Parkinson's disease in culture, a selection of 1-hydroxypyridin-2-one (1,2-HOPO) metal chelators were synthesized and their neuroprotective properties were compared to the 3-hydroxypyridin-4-one; deferiprone (3,4-HOPO; DFP). Protection against 6-OHDA and iron insult by the novel compounds 6 and 9 was comparable to DFP. Iron associated changes by 6-OHDA imply that the neuroprotective capacity of these compounds are due to chelation of the neuronal labile iron pool and the requirement of the iron binding moiety of compound 6 for efficacy supported this hypothesis. In conclusion, two novel 1,2-HOPO's and DFP have comparable neuroprotection against Parkinsonian-associated neurotoxins and supports the continued development of hydroxypyridinone compounds as a non-toxic therapeutic agent in the treatment of neurodegenerative disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom