Nickel recognition by bacterial importer proteins
Author(s) -
Peter T. Chivers
Publication year - 2015
Publication title -
metallomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.012
H-Index - 75
eISSN - 1756-591X
pISSN - 1756-5901
DOI - 10.1039/c4mt00310a
Subject(s) - nickel , bacteria , chemistry , microbiology and biotechnology , biology , genetics , organic chemistry
Nickel supports the growth of microbes from a variety of very different growth environments that affect nickel speciation. The mechanisms of nickel uptake and the molecular bases for the selectivity of this process are emerging. The recent surge of Ni-importer protein structures provides an understanding of Ni-recognition in the initial binding step of the import process. This review compares the structural basis for Ni-recognition in the complexes (ABC and ECF-type) that dominate primary (ATP-dependent) transport, with a focus on how the structures suggest mechanisms for Ni selectivity. The structures raise key questions about the mechanisms of nickel-transfer reactions involved in import. There is also a discussion of key experimental approaches necessary to help establish the physiological importance of these structures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom