z-logo
open-access-imgOpen Access
Copper homeostasis in Mycobacterium tuberculosis
Author(s) -
Xiaoshan Shi,
K. Heran Darwin
Publication year - 2015
Publication title -
metallomics
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.012
H-Index - 75
eISSN - 1756-591X
pISSN - 1756-5901
DOI - 10.1039/c4mt00305e
Subject(s) - mycobacterium tuberculosis , tuberculosis , copper , microbiology and biotechnology , homeostasis , host resistance , host (biology) , biology , immunology , chemistry , medicine , genetics , pathology , organic chemistry
Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom