z-logo
open-access-imgOpen Access
Characterisation and comparison of the uptake of ionizable and polar pesticides, pharmaceuticals and personal care products by POCIS and Chemcatchers
Author(s) -
Sarit Kaserzon,
Darryl W. Hawker,
Karen Kennedy,
M. E. Bartkow,
S. Carter,
Kees Booij,
Jochen F. Mueller
Publication year - 2014
Publication title -
environmental science processes and impacts
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.128
H-Index - 98
eISSN - 2050-7895
pISSN - 2050-7887
DOI - 10.1039/c4em00392f
Subject(s) - triclosan , dicamba , pesticide , environmental chemistry , chemistry , sorbent , environmental impact of pharmaceuticals and personal care products , environmental science , environmental engineering , sewage treatment , organic chemistry , weed control , ecology , medicine , biology , pathology , adsorption
Growing concern about the environmental impact of ionizable and polar organic chemicals such as pesticides, pharmaceuticals and personal care products has lead to the inclusion of some in legislative and regulatory frameworks. It is expected that future monitoring requirements for these chemicals in aquatic environments will increase, along with the need for low cost monitoring and risk assessment strategies. In this study the uptake of 13 neutral and 6 ionizable pesticides, pharmaceuticals and personal care products by modified POCIS (with Strata™-X sorbent) and Chemcatchers™ (SDB-RPS or SDB-XC) was investigated under controlled conditions at pH = 6.5 for 26 days. The modified POCIS and Chemcatcher™ (SDB-RPS) samplers exhibited similar performance with the uptake of the majority of the 19 chemicals of interest categorised as linear over the 26 day deployment. Only a few ionized herbicides (picloram and dicamba) and triclosan showed negligible accumulation. Chemcatcher™ with SDB-XC sorbent performed relatively poorly with only carbamazepine having a linear accumulation profile, and 8 compounds showing no measurable accumulation. Differences in the uptake behavior of chemicals were not easily explained by their physico-chemical properties, strengthening the requirement for detailed calibration data. PES membranes accumulated significant amount of some compounds (i.e. triclosan and diuron), even after extended deployment (i.e. 26 days). At present there is no way to predict which compounds will demonstrate this behavior. Increasing membrane pore size from 0.2 to 0.45 μm for Chemcatcher™ (SBD-RPS) caused an average increase in Rs of 24%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom