Synthesis, structure and magnetic properties of phenylhydroxamate-based coordination clusters
Author(s) -
Rémi Tirfoin,
LiseMarie Chamoreau,
Yanling Li,
Benoît Fleury,
Laurent Lisnard,
Yves Journaux
Publication year - 2014
Publication title -
dalton transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.98
H-Index - 184
eISSN - 1477-9234
pISSN - 1477-9226
DOI - 10.1039/c4dt02405b
Subject(s) - pivalic acid , chemistry , ligand (biochemistry) , crystallography , stereochemistry , receptor , organic chemistry , biochemistry , catalysis
The strategic recombination of preformed coordination clusters in the presence of polymodal bridging ligands has successfully led to the characterisation of five new compounds of structural and magnetic interest. Indeed using the dinuclear complex [M2(H2O)(piv)4(Hpiv)4] (M = Co, Ni; Hpiv = pivalic acid) as starting material and reacting it with phenylhydroxamic acid (H2pha) has yielded the four tetrametallic coordination clusters [Co4(Hpha)2(piv)6(Hpiv)4] (1), [Ni4(Hpha)2(piv)6(Hpiv)2(DMF)2] (2), [Co4(Hpha)2(piv)6(EtOH)2(H2O)2] (3), [Ni4(Hpha)2(piv)6(EtOH)2(H2O)2] (4) and the hexanuclear complex [Co6(Hpha)4(piv)8(EtOH)2]·EtOH (5). All the compounds have been structurally characterised revealing a particular binding mode for the hydroxamate ligand. The study of their magnetic properties has been performed and the modelling of these properties has been done using the appropriate hamiltonians for each compound. The experimental data and their modelling show non-zero spin ground states for compounds 4 and 5.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom