z-logo
open-access-imgOpen Access
MOF positioning technology and device fabrication
Author(s) -
Paolo Falcaro,
Raffaele Riccò,
Cara M. Doherty,
Kang Liang,
Anita J. Hill,
Mark J. Styles
Publication year - 2014
Publication title -
chemical society reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.598
H-Index - 513
eISSN - 1460-4744
pISSN - 0306-0012
DOI - 10.1039/c4cs00089g
Subject(s) - fabrication , nanotechnology , computer science , materials science , medicine , pathology , alternative medicine
Metal organic frameworks (MOFs) offer the highest surface areas per gram of any known material. As such, they epitomise resource productivity in uses where specific surface area is critical, such as adsorption, storage, filtration and catalysis. However, the ability to control the position of MOFs is also crucial for their use in devices for applications such as sensing, delivery, sequestration, molecular transport, electronics, energy production, optics, bioreactors and catalysis. In this review we present the current technologies that enable the precise positioning of MOFs onto different platforms. Methods for permanent localisation, dynamic localisation, and spatial control of functional materials within MOF crystals are described. Finally, examples of devices in which the control of MOF position and functionalisation will play a major technological role are presented.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here