Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach
Author(s) -
Arumugam Sivanesan,
Witold Adamkiewicz,
Govindasamy Kalaivani,
Agnieszka Kamińska,
Jacek Waluk,
Robert Hołyst,
Emad L. Izake
Publication year - 2014
Publication title -
the analyst
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.998
H-Index - 153
eISSN - 1364-5528
pISSN - 0003-2654
DOI - 10.1039/c4an01778a
Subject(s) - raman scattering , raman spectroscopy , nanotechnology , materials science , scattering , surface (topology) , chemistry , optics , physics , geometry , mathematics
This paper demonstrates a renewed procedure for the quantification of surface-enhanced Raman scattering (SERS) enhancement factors with improved precision. The principle of this method relies on deducting the resonance Raman scattering (RRS) contribution from surface-enhanced resonance Raman scattering (SERRS) to end up with the surface enhancement (SERS) effect alone. We employed 1,8,15,22-tetraaminophthalocyanato-cobalt(II) (4α-Co(II)TAPc), a resonance Raman- and electrochemically redox-active chromophore, as a probe molecule for RRS and SERRS experiments. The number of 4α-Co(II)TAPc molecules contributing to RRS and SERRS phenomena on plasmon inactive glassy carbon (GC) and plasmon active GC/Au surfaces, respectively, has been precisely estimated by cyclic voltammetry experiments. Furthermore, the SERS substrate enhancement factor (SSEF) quantified by our approach is compared with the traditionally employed methods. We also demonstrate that the present approach of SSEF quantification can be applied for any kind of different SERS substrates by choosing an appropriate laser line and probe molecule.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom