Creases on the interface between two soft materials
Author(s) -
Lihua Jin,
Dayong Chen,
Ryan C. Hayward,
Zhigang Suo
Publication year - 2013
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/c3sm51512e
Subject(s) - compression (physics) , deformation (meteorology) , materials science , bifurcation , amplitude , interface (matter) , surface (topology) , composite material , scale (ratio) , geometry , mathematics , optics , physics , nonlinear system , wetting , sessile drop technique , quantum mechanics
Theory and experiment are presented to show that an interface between two soft materials under compression can form creases, a type of bifurcation distinct from wrinkles. While creases bifurcate from a state of flat interface by a deformation localized in space and large in amplitude, wrinkles bifurcate from a state of flat interface by a deformation nonlocal in space and infinitesimal in amplitude. The interfacial creases set in at a lower critical compression than interfacial wrinkles, but higher than surface creases. The condition for the onset of interfacial creases is scale-free, and is calculated in terms of elastic moduli, pre-strains and applied strains.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom