z-logo
open-access-imgOpen Access
Iron distribution through the developmental stages of Medicago truncatula nodules
Author(s) -
Benjamín RodríguezHaas,
Lydia Finney,
Stefan Vogt,
Pablo GonzálezMelendi,
Juan Imperial,
Manuel GonzálezGuerrero
Publication year - 2013
Publication title -
metallomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.012
H-Index - 75
eISSN - 1756-591X
pISSN - 1756-5901
DOI - 10.1039/c3mt00060e
Subject(s) - medicago truncatula , rhizobia , apoplast , biology , nodule (geology) , root nodule , symbiosis , botany , compartmentalization (fire protection) , microbiology and biotechnology , biomineralization , nitrogen fixation , legume , leghemoglobin , biophysics , biochemistry , cell wall , bacteria , paleontology , genetics , enzyme
Paramount to symbiotic nitrogen fixation (SNF) is the synthesis of a number of metalloenzymes that use iron as a critical component of their catalytical core. Since this process is carried out by endosymbiotic rhizobia living in legume root nodules, the mechanisms involved in iron delivery to the rhizobia-containing cells are critical for SNF. In order to gain insight into iron transport to the nodule, we have used synchrotron-based X-ray fluorescence to determine the spatio-temporal distribution of this metal in nodules of the legume Medicago truncatula with hitherto unattained sensitivity and resolution. The data support a model in which iron is released from the vasculature into the apoplast of the infection/differentiation zone of the nodule (zone II). The infected cell subsequently takes up this apoplastic iron and delivers it to the symbiosome and the secretory system to synthesize ferroproteins. Upon senescence, iron is relocated to the vasculature to be reused by the shoot. These observations highlight the important role of yet to be discovered metal transporters in iron compartmentalization in the nodule and in the recovery of an essential and scarce nutrient for flowering and seed production.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom