z-logo
open-access-imgOpen Access
Bridging lectin binding sites by multivalent carbohydrates
Author(s) -
Valentin Wittmann,
Roland J. Pieters
Publication year - 2013
Publication title -
chemical society reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.598
H-Index - 513
eISSN - 1460-4744
pISSN - 0306-0012
DOI - 10.1039/c3cs60089k
Subject(s) - lectin , chemistry , wheat germ agglutinin , chelation , concanavalin a , binding site , biochemistry , stereochemistry , organic chemistry , in vitro
Carbohydrate-protein interactions are involved in a multitude of biological recognition processes. Since individual protein-carbohydrate interactions are usually weak, multivalency is often required to achieve biologically relevant binding affinities and selectivities. Among the possible mechanisms responsible for binding enhancement by multivalency, the simultaneous attachment of a multivalent ligand to several binding sites of a multivalent receptor (i.e. chelation) has been proven to have a strong impact. This article summarizes recent examples of chelating lectin ligands of different size. Covered lectins include the Shiga-like toxin, where the shortest distance between binding sites is ca. 9 Å, wheat germ agglutinin (WGA) (shortest distance between binding sites 13-14 Å), LecA from Pseudomonas aeruginosa (shortest distance 26 Å), cholera toxin and heat-labile enterotoxin (shortest distance 31 Å), anti-HIV antibody 2G12 (shortest distance 31 Å), concanavalin A (ConA) (shortest distance 72 Å), RCA120 (shortest distance 100 Å), and Erythrina cristagalli (ECL) (shortest distance 100 Å). While chelating binding of the discussed ligands is likely, experimental proof, for example by X-ray crystallography, is limited to only a few cases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom