Design and modification of three-component randomly incorporated copolymers for high performance organic photovoltaic applications
Author(s) -
Jun Li,
KokHaw Ong,
Prashant Sonar,
SiewLay Lim,
Ging-Meng Ng,
HoiKa Wong,
Huei-Shuan Tan,
ZhiKuan Chen
Publication year - 2012
Publication title -
polymer chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 117
eISSN - 1759-9962
pISSN - 1759-9954
DOI - 10.1039/c2py20763j
Subject(s) - copolymer , thiophene , stille reaction , moiety , materials science , acceptor , polymer chemistry , conjugated system , polymer , alkyl , polymer solar cell , polymerization , organic solar cell , photochemistry , chemistry , organic chemistry , condensed matter physics , physics , composite material
In this study we report the molecular design, synthesis, characterization, and photovoltaic properties of a series of diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) based donor-acceptor random copolymers. The six random copolymers are obtained via Stille coupling polymerization using various concentration ratios of donor to acceptor in the conjugated backbone. Bis(trimethylstannyl)thiophene was used as the bridge block to link randomly with the two comonomers 5-(bromothien-2-yl)-2,5-dialkylpyrrolo[3,4-c]pyrrole-1, 4-dione and 2,6-dibromo-3,5-dipentadecyl-dithieno[3,2-b;2′,3′-d] thiophene. The optical properties of these copolymers clearly reveal a change in the absorption band through optimization of the donor-acceptor ratio in the backbone. Additionally, the solution processability of the copolymers is modified through the attachment of different bulky alkyl chains to the lactam N-atoms of the DPP moiety. Applications of the polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with PCBM as acceptor, show power conversion efficiencies (PCEs) of up to 5.02%
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom