Synthesis of ternary transition metal fluorides Li3MF6via a sol–gel route as candidates for cathode materials in lithium-ion batteries
Author(s) -
Julia Kohl,
Dennis Wiedemann,
Suliman Nakhal,
Patrick Bottke,
Noel Ferro,
Thomas Bredow,
Erhard Kemnitz,
Martin Wilkening,
Paul Heitjans,
Martin Lerch
Publication year - 2012
Publication title -
journal of materials chemistry
Language(s) - English
Resource type - Journals
eISSN - 1364-5501
pISSN - 0959-9428
DOI - 10.1039/c2jm32133e
Subject(s) - orthorhombic crystal system , ternary operation , monoclinic crystal system , transition metal , magic angle spinning , lithium (medication) , cathode , ion , materials science , crystal structure , inorganic chemistry , chemistry , nuclear magnetic resonance spectroscopy , crystallography , catalysis , organic chemistry , medicine , computer science , programming language , endocrinology
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A sol–gel route for ternary lithium fluorides of transition metals (M) is presented allowing the synthesis of Li3MF6-type and Li2MF5-type compounds. It is based on a fluorolytic process using transition metal acetylacetonates as precursors. The domain size of the obtained powders can be controlled by modifying the conditions of synthesis. 6Li and 7Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is used to study local environments of the Li ions in orthorhombic and monoclinic Li3VF6 as well as Li2MnF5. The number of magnetically inequivalent Li sites found by MAS NMR is in agreement with the respective crystal structure of the compounds studied. Quantum chemical calculations show that all materials have high de-lithiation energies making them suitable candidates to be used as high-voltage battery cathode materials.BMBF, 03X4612I, LiB2015: Helion - Hochenergie-Lithiumionen-Batterien für die Zukunf
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom