z-logo
open-access-imgOpen Access
Metallacarboranes and their interactions: theoretical insights and their applicability
Author(s) -
Pau Farràs,
Emilio J. JuárezPérez,
Martin Lepšı́k,
Rafael Luque,
Rosario Núñez,
Francesç Teixidor
Publication year - 2012
Publication title -
chemical society reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.598
H-Index - 513
eISSN - 1460-4744
pISSN - 0306-0012
DOI - 10.1039/c2cs15338f
Subject(s) - intramolecular force , computer science , chemistry , raman spectroscopy , nanotechnology , computational chemistry , materials science , physics , organic chemistry , optics
This tutorial review will deal with the study of metallacarboranes and their interactions with other molecules from a theoretical point of view. This contribution is devoted to guide experimental chemists through calculations that some years ago were reserved to theoretical specialists. The widespread availability of fast computers enables nowadays studies of complex compounds (e.g. metallacarboranes) from different perspectives including simulation of NMR, infrared or Raman spectra and calculation of other properties such as atomic charges or inter-/intramolecular interactions. The insights gained on the basis of theoretical calculations are crucial for either finding novel or improving existing applications of metallacarboranes. For example, in the case of enzyme inhibitors, the interactions of the metallacarboranes with the surrounding protein and how the interaction affects the efficiency are difficult problems to study experimentally. The use of theoretical tools can provide a detailed understanding of the physico-chemical basis of the interactions and thus offers a chance to control the overall process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom