Patterned polymer brushes
Author(s) -
Tao Chen,
Ihsan Amin,
Rainer Jordan
Publication year - 2012
Publication title -
chemical society reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.598
H-Index - 513
eISSN - 1460-4744
pISSN - 0306-0012
DOI - 10.1039/c2cs15225h
Subject(s) - lithography , nanotechnology , materials science , next generation lithography , photolithography , electron beam lithography , polymer , x ray lithography , maskless lithography , soft lithography , resist , stencil lithography , interference lithography , fabrication , optoelectronics , composite material , layer (electronics) , medicine , alternative medicine , pathology
This critical review summarizes recent developments in the fabrication of patterned polymer brushes. As top-down lithography reaches the length scale of a single macromolecule, the combination with the bottom-up synthesis of polymer brushes by surface-initiated polymerization becomes one main avenue to design new materials for nanotechnology. Recent developments in surface-initiated polymerizations are highlighted along with diverse strategies to create patterned polymer brushes on all length scales based on irradiation (photo- and interference lithography, electron-beam lithography), mechanical contact (scanning probe lithography, soft lithography, nanoimprinting lithography) and on surface forces (capillary force lithography, colloidal lithography, Langmuir-Blodgett lithography) (116 references).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom