z-logo
open-access-imgOpen Access
Optimizing dirhodium(ii) tetrakiscarboxylates as chiral NMR auxiliaries
Author(s) -
Jens T. Mattiza,
Joerg G. G. Fohrer,
H. Duddeck,
Michael G. Gardiner,
Ashraf Ghanem
Publication year - 2011
Publication title -
organic and biomolecular chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.923
H-Index - 146
eISSN - 1477-0539
pISSN - 1477-0520
DOI - 10.1039/c1ob05665d
Subject(s) - chemistry , enantiopure drug , diastereomer , adduct , stereochemistry , enantiomer , rhodium , nuclear magnetic resonance spectroscopy , proton nmr , enantioselective synthesis , organic chemistry , catalysis
Thirteen enantiopure paddlewheel-shaped dirhodium(II) tetrakiscarboxylate complexes have been checked for their efficiency in the dirhodium method (differentiation of enantiomers by NMR spectroscopy); six of them are new. Their diastereomeric dispersion effects were studied and compared via so-called key numbers KN. Adducts of each complex were tested with five different test ligands representing all relevant donor properties from strong (phosphane) to very weak (ether). Only one of them, the dirhodium complex with four axial (S)-N-2,3-naphthalenedicarboxyl-tert-leucinate groups (N23tL), showed results significantly better for all ligands than the conventional complex Rh* [Rh(II)(2)[(R)-(+)-MTPA](4); MTPA = methoxytrifluoromethylphenylacetate]. On the basis of (1)H{(1)H} NOE spectroscopy and X-ray diffraction, a combination of favourable anisotropic group orientation and conformational flexibility is held responsible for the high efficiency of N23tL in enantiodifferentiation. Both complexes, Rh* and N23tL, are recommended as chiral auxiliaries for the dirhodium experiment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom