z-logo
open-access-imgOpen Access
Simulations of the structure and dynamics of nanoparticle-based ionic liquids
Author(s) -
Bingbing Hong,
Alexandros Chremos,
Athanassios Z. Panagiotopoulos
Publication year - 2011
Publication title -
faraday discussions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.255
H-Index - 110
eISSN - 1364-5498
pISSN - 1359-6640
DOI - 10.1039/c1fd00076d
Subject(s) - chemical physics , counterion , microsecond , molecular dynamics , nanoparticle , ionic bonding , chemistry , ion , ionic liquid , electrostatics , materials science , nanotechnology , computational chemistry , physics , organic chemistry , astronomy , catalysis
We use molecular dynamics simulations over microsecond time scales to study the structure and dynamics of coarse-grained models for nanoparticle-based ionic liquids. The systems of interest consist of particles with charged surface groups and linear or three-arm counterions, which also act as the solvent. A comparable uncharged model of nanoparticles with tethered chains is also studied. The pair correlation functions display a rich structure resulting from the packing of cores and chains, as well as electrostatic effects. Even though electrostatic interactions between oppositely charged ions at contact are much greater than the thermal energy, we find that chain dynamics at intermediate time scales are dominated by chain hopping between core particles. The uncharged core particles with tethered chains diffuse faster than the ionic core particles. © 2012 The Royal Society of Chemistry

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom