Tools for resolving complexity in the electron transfer networks of multiheme cytochromes c
Author(s) -
Mackenzie A. Firer-Sherwood,
Kathryn D. Bewley,
JeeYoung Mock,
Sean J. Elliott
Publication year - 2011
Publication title -
metallomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.012
H-Index - 75
eISSN - 1756-591X
pISSN - 1756-5901
DOI - 10.1039/c0mt00097c
Subject(s) - shewanella oneidensis , electron transfer , chemistry , electron transport chain , electron , chemical physics , biophysics , biochemistry , physics , biology , bacteria , genetics , quantum mechanics
Examining electron transfer between two proteins with identical spectroscopic signatures is a challenging task. It is supposed that several multiheme cytochromes in Shewanella oneidensis form a molecular "wire" through which electrons are transported across the cellular space and a direct study of this transient protein-protein interaction has not yet been reported. In this study, we present variations on catalytic protein film voltammetry and an anaerobic affinity chromatography assay to demonstrate unidirectional electron transfer between proposed protein pairs. Through use of these techniques, we are able to confirm the transient interactions between these cytochromes, supporting the model of electron transfer that is present in the literature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom