z-logo
open-access-imgOpen Access
Photodissociation dynamics of ClOOCl at 248.4 and 308.4 nm
Author(s) -
Wen-Tsung Huang,
Andrew F. Chen,
ICheng Chen,
Chen-Hsun Tsai,
Jim J. Lin
Publication year - 2011
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/c0cp02453h
Subject(s) - photodissociation , chemistry , photoexcitation , dissociation (chemistry) , spectroscopy , analytical chemistry (journal) , branching fraction , excited state , photochemistry , atomic physics , physics , quantum mechanics , chromatography
The dynamics of ClOOCl photodissociation at 248.4 and 308.4 nm was studied with photofragment translational spectroscopy. At 248.4 nm photoexcitation, the observed products are Cl, O(2), ClO and O. Product translational energy distributions P(E) and anisotropy parameters β were deduced from the measured time-of-flight spectra of the Cl, O(2), and ClO photoproducts. The photodissociation mechanisms have been discussed and compared with available theoretical results. Synchronous and fast sequential breaking of the two Cl-O bonds may both contribute to the dissociation. The relative product yields for [ClO]: [Cl] was measured to be 0.15 ± 0.04:1. The relative amounts of [O]:[O(2)] products were estimated to be 0.12:1. The branching ratios among the Cl + O(2) + Cl:ClO + ClO:ClO + Cl + O product channels were estimated to be 0.82:0.08:0.10. At 308.4 nm excitation, time-of-flight spectra of the O(2) and ClO photoproducts were recorded while there was interference from Cl(2) impurity in detecting the Cl product. Nonetheless, the observed ClO yield relative to the O(2) yield at 308.4 nm is 1.5 times that at 248.4 nm. The branching ratio between the Cl + O(2) + Cl:ClO + ClO product channels was estimated to be 0.81:0.19 at 308.4 nm. This result suggests that the ClO product may contribute a noticeable yield in the photolysis of ClOOCl at the atmospherically important wavelengths above 300 nm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom