Luminescence quenching of Re(i) molecular rectangles by quinones
Author(s) -
Thangamuthu Rajendran,
B. Manimaran,
Rong-Tang Liao,
YenHsiang Liu,
Pounraj Thanasekaran,
RenJay Lin,
IJy Chang,
PiTai Chou,
Rameshprabu Ramaraj,
Seenivasan Rajagopal,
KuangLieh Lu
Publication year - 2010
Publication title -
dalton transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.98
H-Index - 184
eISSN - 1477-9234
pISSN - 1477-9226
DOI - 10.1039/b925978c
Subject(s) - luminescence , quenching (fluorescence) , chemistry , photochemistry , materials science , crystallography , physics , fluorescence , optoelectronics , optics
The rhenium-based rectangles [{Re(CO)(3)(mu-bpy)Br}{Re(CO)(3)(mu-L)Br}](2) (I, L = 4,4'-dipyridylacetylene (dpa); II, L = 4,4'-dipyridylbutadiyne (dpb); III, L = 1,4-bis(4'-pyridylethynyl)benzene (bpeb); bpy = 4,4'-bipyridine) are emissive in solution at room temperature. The presence of extended pi conjugation leads to an increase in electron delocalization, which, in turn, results in improved luminescence and lower nuclear reorganization energy. These rectangles, upon electronic excitation, undergo facile electron transfer (ET) reactions with quinones and both the dynamic and static quenching contribute to the reaction. Spectral and electrochemical measurements show that quinone 7,7,8,8-tetracyanoquinodimethane (TCNQ) binds strongly to rectangle I. The driving force dependence of k(et), deduced from the luminescence quenching of rectangles with quinones, can be well accounted for within the context of the Marcus theory of electron transfer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom