Microfluidic platform for controlling the differentiation of embryoid bodies
Author(s) -
Wai-To Fung,
Ali Beyzavi,
Patrick Abgrall,
NamTrung Nguyen,
HY Li
Publication year - 2009
Publication title -
lab on a chip
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.064
H-Index - 210
eISSN - 1473-0197
pISSN - 1473-0189
DOI - 10.1039/b903753e
Subject(s) - embryoid body , microbiology and biotechnology , microfluidics , cellular differentiation , embryonic stem cell , directed differentiation , tissue engineering , cell type , induced pluripotent stem cell , stem cell , cell , chemistry , biology , nanotechnology , materials science , biochemistry , genetics , gene
Embryonic stem (ES) cells are pluripotent cells, which can differentiate into any cell type. This cell type has often been implicated as an eminent source of renewable cells for tissue regeneration and cellular replacement therapies. Studies on manipulation of the various differentiation pathways have been at the forefront of research. There are many ways in which ES cells can be differentiated. One of the most common techniques is to initiate the development of embryoid bodies (EBs) by in vitro aggregation of ES cells. Thereafter, EBs can be induced to undergo differentiation into various cell lineages. In this article, we present a microfluidic platform using biocompatible materials, which is suitable for culturing EBs. The platform is based on a Y-channel device with two inlets for two different culturing media. An EB is located across both streams. Using the laminar characteristics at low Reynolds number and high Peclet numbers, we have induced cell differentiation on half of the EB while maintaining the other half in un-induced stages. The results prove the potential of using microfluidic technology for manipulation of EBs and ES cells in tissue engineering.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom