Electronic communication in oligonuclear ferrocene complexes with anionic four-coordinate boron bridges
Author(s) -
L. Kaufmann,
J.M. Breunig,
H. Vitze,
Frauke Schödel,
I. Nowik,
M. Pichlmaier,
Michael Bolte,
HansWolfram Lerner,
Rainer F. Winter,
Rolfe H. Herber,
Matthias Wagner
Publication year - 2009
Publication title -
dalton transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.98
H-Index - 184
eISSN - 1477-9234
pISSN - 1477-9226
DOI - 10.1039/b821406a
Subject(s) - chemistry , ferrocene , cyclopentadienyl complex , crystallography , redox , cyclic voltammetry , electrochemistry , mössbauer spectroscopy , electron transfer , boron , atom (system on chip) , inorganic chemistry , electrode , biochemistry , organic chemistry , catalysis , computer science , embedded system
The di- and trinuclear ferrocene species Li[Fc-BPh(2)-Fc] (Li[]) and Li(2)[Fc-BPh(2)-fc-BPh(2)-Fc] (Li(2)[]) have been investigated with regard to their electrochemical properties and the degree of intervalence charge-transfer after partial oxidation. Li[] shows two distinct one-electron redox waves for its chemically equivalent ferrocenyl substituents in the cyclic voltammogram (E(1/2) = -0.38 V, -0.64 V; vs. FcH/FcH(+)). The corresponding values of Li(2)[] are E(1/2) = -0.45 V (two-electron process) and -1.18 V. All these redox events are reversible at r. t. on the time scale of cyclic voltammetry. X-ray crystallography on the mixed-valent Fe(II)(2)Fe(III) complex Li(12-c-4)(2)[] reveals the centroid-centroid distance between the cyclopentadienyl rings of each of the terminal ferrocenyl substituents (3.329 A) to be significantly smaller than in the central 1,1'-ferrocenediyl fragment (3.420 A). This points towards a charge-localized structure (on the time scale of X-ray crystallography) with the central iron atom being in the Fe(III) state. Mössbauer spectroscopic measurements on Li(12-c-4)(2)[] lend further support to this interpretation. Spectroelectrochemical measurements on Li[] and Li(2)[] in the wavelength range between 300-2800 nm do not show bands interpretable as intervalence charge-transfer absorptions for the mixed-valent states. All data accumulated so far lead to the conclusion that electronic interaction between the individual Fe atoms in Li[] and Li(2)[] occurs via a through-space pathway and/or is electrostatic in nature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom