z-logo
open-access-imgOpen Access
Synthesis and anti-HIV activity of conformationally restricted bicyclic hexahydroisobenzofuran nucleoside analogs
Author(s) -
Alba DíazRodríguez,
Yogesh S. Sanghvi,
Susana Fernández,
Raymond F. Schinazi,
Emmanuel A. Theodorakis,
Miguel Ferrero,
Vicente Gotor
Publication year - 2009
Publication title -
organic and biomolecular chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.923
H-Index - 146
eISSN - 1477-0539
pISSN - 1477-0520
DOI - 10.1039/b818707j
Subject(s) - stereochemistry , bicyclic molecule , nucleoside , chemistry , thymine , purine nucleoside phosphorylase , inosine , uracil , purine analogue , nucleoside analogue , purine , biochemistry , adenosine , enzyme , dna
A chiral synthesis of a series of hexahydroisobenzofuran (HIBF) nucleosides has been accomplished via glycosylation of a stereo-defined (syn-isomer) sugar motif 16 with the appropriate silylated bases. All nucleoside analogs were obtained in 52-71% yield as a mixture of alpha- and beta-anomeric products increasing the breadth of the novel nucleosides available for screening. The structure of the novel bicyclic HIBF nucleosides was established by a single crystal X-ray structure of the beta-HIBF thymine analog 22b. Furthermore, the sugar conformation for these nucleosides was established as N-type. Among the novel HIBF nucleosides synthesized, twenty-five compounds were tested as inhibitor of HIV-1 in human peripheral blood mononuclear (PBM) cells and seven were found to be active (EC(50) = 12.3-36.2 microM). Six of these compounds were purine analogs with beta-HIBF inosine analog 22o being the most potent (EC(50) = 12.3 microM) among all compounds tested. The striking resemblance between didanosine (ddI) and 22o may explain the potent anti-HIV activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom