Novel platinum(ii)-based anticancer complexes and molecular hosts as their drug delivery vehicles
Author(s) -
Nial J. Wheate,
Robin I. Taleb,
Anwen M. KrauseHeuer,
Rebekah L. Cook,
Shaoyu Wang,
Vincent J. Higgins,
Janice R. AldrichWright
Publication year - 2007
Publication title -
dalton transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.98
H-Index - 184
eISSN - 1477-9234
pISSN - 1477-9226
DOI - 10.1039/b704973k
Subject(s) - platinum , chemistry , intercalation (chemistry) , dna , combinatorial chemistry , stereochemistry , ligand (biochemistry) , adduct , ethylenediamine , phenanthroline , a dna , cytotoxicity , crystallography , organic chemistry , biochemistry , receptor , in vitro , catalysis
Platinum(II)-based DNA intercalators where the intercalating ligand is 1,10-phenanthroline or a phenanthroline derivative and where the ancillary ligand is either achiral (e.g. ethylenediamine) or chiral (e.g. diaminocyclohexane) show a range of cytotoxicities with a defined structure-activity relationship. The most cytotoxic are those that contain methylated-phenanthroline ligands and 1S,2S-diaminocyclohexane (S,S-dach) as the ancillary ligand. We have developed a new purification method using Sep-Pak C-18 reverse phase columns, which means these metal complexes can be made faster and cheaper compared to published methods. Platinum(II)-based complexes containing imidazole, pyrrole and beta-alanine subunits, that are capable of recognising specific DNA base-pair sequences have also been synthesised. These include linear or hairpin polyamide ligands that can recognise DNA sequences up to seven base-pairs in length and contain single platinum centres capable of forming monofunctional adducts with DNA. We have now synthesised and characterised, by (1)H and (195)Pt NMR, ESI-MS and elemental analysis, the first dinuclear platinum(II) DNA sequence selective agent. Finally, using (1)H NMR we have examined the encapsulation of our platinum(II)-based DNA intercalators by cucurbit[6]uril (CB[6]). Encapsulation by CB[6] was found to not significantly change the cytotoxicity of five platinum(II)-based DNA intercalators, indicating it may have utility as a molecular carrier for improved drug delivery.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom