z-logo
open-access-imgOpen Access
Rationalizing the different products in the reaction of N2 with three-coordinate MoL3 complexes
Author(s) -
Gemma J. Christian,
Robert Stranger,
Brian F. Yates,
Christopher C. Cummins
Publication year - 2007
Publication title -
dalton transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.98
H-Index - 184
eISSN - 1477-9234
pISSN - 1477-9226
DOI - 10.1039/b701050h
Subject(s) - chemistry , reaction coordinate , computational chemistry
The reaction of N2 with three-coordinate MoL3 complexes is known to give rise to different products, N-MoL3, L3Mo-N-MoL3 or Mo2L6, depending on the nature of the ligand L. The energetics of the different reaction pathways are compared for L = NH2, NMe2, N((i)Pr)Ar and N((t)Bu)Ar (Ar = 3,5-C6H3Me2) using density functional methods in order to rationalize the experimental results. Overall, the exothermicity of each reaction pathway decreases as the ligand size increases, largely due to the increased steric crowding in the products compared to reactants. In the absence of steric strain, the formation of the metal-metal bonded dimer, Mo2L6, is the most exothermic pathway but this reaction shows the greatest sensitivity to ligand size varying from significantly exothermic, -403 kJ mol(-1) for L = NMe2, to endothermic, +78 kJ mol(-1) for L = N((t)Bu)Ar. For all four ligands, formation of N-MoL3 via cleavage of the N2 bridged dimer intermediate, L3Mo-N-N-MoL3, is strongly exothermic. However, in the presence of excess reactant MoL3, formation of the single atom-bridged complex L3Mo-N-MoL3 from N-MoL3 + MoL3 is both thermodynamically and kinetically favoured for L = NMe2 and N((i)Pr)Ar, in agreement with experiment. In the case of L = N((t)Bu)Ar, the greater steric bulk of the (t)Bu group results in a much less exothermic reaction and a calculated barrier of 66 kJ mol(-1) to formation of the L3Mo-N-MoL3 dimer. Consequently, for this ligand, the energetically and kinetically favoured product, consistent with the experimental data, is the nitride complex L3Mo-N.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom