New versatile ligand family, pyrazine-modulated oligo-α-pyridylamino ligands, from coordination polymer to extended metal atom chains
Author(s) -
R.H. Ismayilov,
Wenzhen Wang,
GeneHsiang Lee,
RuiRen Wang,
Isiah PoChun Liu,
ChenYu Yeh,
ShieMing Peng
Publication year - 2007
Publication title -
dalton transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.98
H-Index - 184
eISSN - 1477-9234
pISSN - 1477-9226
DOI - 10.1039/b700533d
Subject(s) - ligand (biochemistry) , chemistry , metal , pyrazine , crystallography , coordination polymer , atom (system on chip) , amine gas treating , electrochemistry , stereochemistry , crystal structure , organic chemistry , biochemistry , receptor , computer science , embedded system , electrode
Here we designed and synthesized a new ligand, di(2-pyrazyl)amine (Hdpza) (1) and studied its coordination modes and the corresponding complexes with Cu(II), Co(II), Ni(II) and Cr(II). Hdpza is an analogue of the well-studied di(2-pyridyl)amine (Hdpa) ligand, which was used to generate the first extended metal atom chain. Three types of coordination modes were found: anti-anti style which resulted in a mononuclear compound [Cu(Hdpza)(2)(H(2)O)(2)](ClO(4))(2) (2); anti-syn which was observed in a complex for the first time and resulted in a 2-D coordination polymer [Co(mu(2)-Hdpza)(2)(NCS)(2)] (3); and syn-syn type which was observed in extended metal atom chains [Ni(3)(mu(3)-dpza)(4)Cl(2)] (4), [Ni(3)(mu(3)-dpza)(4)(NCS)(2)] (5) and [Cr(3)(mu(3)-dpza)(4)Cl(2)] (6). Weak antiferromagnetic coupling via Hdpza was observed in 3, whereas magnetic studies on extended metal atom chains 4 and 5 revealed that the interaction parameter was more than -200 cm(-1). Electrochemistry showed that the extended metal atom chains 4-6 are much more stable to oxidation than the Hdpa complexes, and are able to undergo reduction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom