Novel linear hexanuclear cobalt string complexes (Co612+) and one-electron reduction products (Co611+) supported by four bpyany2? ligands
Author(s) -
ChihHsien Chien,
Jung-Che Chang,
ChenYu Yeh,
GeneHsiang Lee,
JimMin Fang,
ShieMing Peng
Publication year - 2006
Publication title -
dalton transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.98
H-Index - 184
eISSN - 1477-9234
pISSN - 1477-9226
DOI - 10.1039/b515311e
Subject(s) - electrochemistry , chemistry , crystallography , ligand (biochemistry) , redox , cobalt , palladium , stereochemistry , catalysis , inorganic chemistry , organic chemistry , receptor , electrode , biochemistry
The new ligand, 2,7-bis(alpha-pyridylamino)-1,8-naphthyridine (H2bpyany), was synthesized by the reaction of 2,7-dichloro-1,8-naphthyridine with 2-aminopyridine in the presence of t-BuOK under palladium(0)-catalyzed conditions. The preparation and characterization of novel hexacobalt string complexes, [Co6(mu6-bpyany)4(NCS)2](PF6)n (n=1 (1); n=2 (2)) and [Co6(mu6-bpyany)4(OTf)2](OTf)n (n = 2 (3); n = 1 (4)) are presented. The crystal structures for compounds have been determined by X-ray crystallography. Compounds 1 and 4 have the Co6 11+ configurations and are air-stable. Compounds 2 and 3 with Co6 12+ configurations are structurally similar to 1 and 4, respectively. The electrochemistry of 1 displays four redox couples at E1/2= -0.55, +0.38, +0.91, and +1.18 V (vs. Ag/AgCl). The magnetic data show that compounds 1 and 4 are in a spin state of S = 1/2, and 2 and 3 in a spin state of S = 1. The results of the EHMO calculations on compounds 1 and 2 are in agreement with their magnetic measurements.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom