Consecutive fragmentations of the cubane-like zinc cluster [CH3Zn(O-i-C3H7)]4upon electron ionization
Author(s) -
Detlef Schröder,
Helmut Schwarz,
Sebastian Polarz,
Matthias Drieß
Publication year - 2005
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/b415078c
Subject(s) - chemistry , fragmentation (computing) , dissociation (chemistry) , ionization , ion , electron ionization , zinc , cluster (spacecraft) , analytical chemistry (journal) , hydrogen , organic chemistry , computer science , operating system , programming language
The sequential dissociations of the tetranuclear zinc cluster-ion [(CH3)3Zn4(O-i-C3H7)4]+ obtained by dissociative electron ionization of neutral [(CH3)Zn(O-i-C3H7)]4 are investigated by tandem mass spectrometry. After initial loss of a neutral (CH3)Zn(O-i-C3H7) unit to afford [(CH3)2Zn3(O-i-C3H7)3]+, hydrogen migration leads to the expulsion of neutral acetone concomitant with [(CH3)2Zn3(O-i-C3H7)2(H)]+ as ionic fragment. Unimolecular dissociation of the latter gives rise to [(CH3)2Zn2(O-i-C3H7)]+ and neutral HZn(O-i-C3H7). As demonstrated by collisional ionization of the neutral product, in the fragmentation of the dinuclear cluster [(CH3)2Zn2(O-i-C3H7)]+ neutral CH3ZnH is formed, rather than the more stable fragments Zn + CH4. From the resulting mononuclear species CH3Zn(OC(CH3)2)+ acetone is eliminated to afford CH3Zn+ as a quasi-terminal fragment ion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom