z-logo
open-access-imgOpen Access
Vibrational spectrum and molecular structure of triphenylamine monomer: A combined matrix-isolation FTIR and theoretical study
Author(s) -
Igor Reva,
Leszek Lapiński,
Nitin Chattopadhyay,
Rui Fausto
Publication year - 2003
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/b306489a
Subject(s) - triphenylamine , matrix isolation , chemistry , computational chemistry , monomer , crystallography , infrared , infrared spectroscopy , molecular physics , photochemistry , physics , polymer , organic chemistry , optics
Theoretical optimization of triphenylamine geometry, carried out at DFT(B3LYP) level using 6-31G** and aug-cc-pVDZ basis sets, predicted a propeller-like structure of the compound with D3 overall symmetry. In this structure, the central NCCC atoms are coplanar and the phenyl rings are symmetrically twisted from this plane by 41.5° (6-31G**) or 41.6° (aug-cc-pVDZ). The experimental FTIR spectrum of triphenylamine monomers isolated in an argon matrix was measured and interpreted by comparison with theoretical spectra calculated at the DFT(B3LYP) level with 6-31G** or aug-cc-pVDZ basis sets. The good agreement between the experimental and theoretical spectra allowed a positive assignment of the observed infrared absorption bands. Conformational flexibility of triphenylamine was investigated by carrying out a series of theoretical scans of the potential energy hypersurface of the system. Special attention was granted to the minimal energy pathway between the left-hand rotating and right-hand rotating symmetry identical structures of the compound. A route conserving a C2 symmetry axis was identified as implying an energy barrier of 20 kJ mol−1 only, whereas the calculated barrier for the concerted twist of all the phenyl rings (the route with conservation of the C3 symmetry axis) was as high as 54 kJ mol−1

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom