z-logo
open-access-imgOpen Access
Reaction and complex formation between OH radical and acetone
Author(s) -
Gábor Vasvári,
István Szilágyi,
Ákos Bencsura,
Sándor Dóbé,
Tibor Be ́rces,
Eric He,
Sébastien Canneaux,
F. Bohr
Publication year - 2001
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/b009601f
Subject(s) - chemistry , reaction mechanism , hydrogen atom , hydroxyl radical , hydrogen atom abstraction , branching (polymer chemistry) , kinetics , ab initio , acetone , chemical kinetics , ab initio quantum chemistry methods , computational chemistry , medicinal chemistry , hydrogen , radical , catalysis , molecule , group (periodic table) , organic chemistry , physics , quantum mechanics
Kinetics and mechanism of the reaction of OH with CH3C(O)CH3 have been studied by discharge-flow experiments and CCSD(T) quantum chemical computations. In the experiments, the rate coefficient for the overall reaction, OH + CH3C(O)CH3 → products (1), and the branching ratio for the specific reaction channel OH + CH3C(O)CH3 → CH2C(O)CH3 + H2O (1a) have been determined to be k1 = (1.04 ± 0.03) × 1011 cm3 mol−1 s−1 and Γ1a = k1a/k1 = 0.50 ± 0.04, respectively (T = 298 K). Two different reaction pathways have been characterized by ab initio calculations. Both H atom abstraction and OH addition to the CO group have been found to occur through hydrogen bonded OH···CH3C(O)CH3 complexes. Most of our results support recent findings (M. Wollenhaupt, S. A. Carl, A. Horowitz and J. N. Crowley, J. Phys. Chem. A, 2000, 104, 2695; M. Wollenhaupt and J. N. Crowley, J. Phys. Chem. A, 2000, 104, 6429) but contradictions remain concerning the mechanism of this atmospherically important reaction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom