z-logo
open-access-imgOpen Access
Longitudinal modeling of ultrasensitive and traditional prostate-specific antigen and prediction of biochemical recurrence after radical prostatectomy
Author(s) -
Teemu D. Laajala,
Heikki Seikkula,
Fatemeh Seyednasrollah,
Tuomas Mirtti,
Peter J. Boström,
Laura L. Elo
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep36161
Subject(s) - prostatectomy , biochemical recurrence , medicine , prostate specific antigen , breakpoint cluster region , urology , prostate cancer , nomogram , adjuvant , oncology , cancer , receptor
Ultrasensitive prostate-specific antigen (u-PSA) remains controversial for follow-up after radical prostatectomy (RP). The aim of this study was to model PSA doubling times (PSADT) for predicting biochemical recurrence (BCR) and to capture possible discrepancies between u-PSA and traditional PSA (t-PSA) by utilizing advanced statistical modeling. 555 RP patients without neoadjuvant/adjuvant androgen deprivation from the Turku University Hospital were included in the study. BCR was defined as two consecutive PSA values >0.2 ng/mL and the PSA measurements were log 2 -transformed. One third of the data was reserved for independent validation. Models were first fitted to the post-surgery PSA measurements using cross-validation. Major trends were then captured using linear mixed-effect models and a predictive generalized linear model effectively identified early trends connected to BCR. The model generalized for BCR prediction to the validation set with ROC-AUC of 83.6% and 95.1% for the 1 and 3 year follow-up censoring, respectively. A web-based tool was developed to facilitate its use. Longitudinal trends of u-PSA did not display major discrepancies from those of t-PSA. The results support that u-PSA provides useful information for predicting BCR after RP. This can be beneficial to avoid unnecessary adjuvant treatments or to start them earlier for selected patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom