z-logo
open-access-imgOpen Access
Decadal variability in the occurrence of wintertime haze in central eastern China tied to the Pacific Decadal Oscillation
Author(s) -
Sen Zhao,
Jianping Li,
Cheng Sun
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep27424
Subject(s) - pacific decadal oscillation , haze , climatology , china , environmental science , atmospheric sciences , sea surface temperature , geography , meteorology , geology , archaeology
Haze is a serious issue in China with increasing concerns, and understanding the factors driving decadal-scale variations in haze occurrence is relevant for government policymaking. Using a comprehensive observational haze dataset, we demonstrate notable decadal fluctuations in the number of haze days (HD) during winter in central eastern China, showing a decline since the mid-1980s. The leading mode of the wintertime HD features an increasing trend for 1959–2012 in eastern China, highly correlated with China’s gross domestic product (GDP) that represents increasing trend of pollutant emissions, and to a lesser extent meteorological factors. The second mode shows decadal variations in central eastern China associated with Pacific Decadal Oscillation (PDO). Observations and numerical simulations suggest that Mongolia High and corresponding descending motion tend to be enhanced (weakened) in central eastern China during the positive (negative) phase of PDO. With PDO shifting towards a negative phase, the weakened Mongolia High and ascending anomalies make the air unstable and conduce to the spread of pollutants, leading to the decline in the wintertime HD over central eastern China since the mid-1980s. Based on above physical mechanisms, a linear model based on PDO and GDP metrics provided a good fit to the observed HD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom