z-logo
open-access-imgOpen Access
Simultaneous determination of 8-oxo-2’-deoxyguanosine and 8-oxo-2’-deoxyadenosine in human retinal DNA by liquid chromatography nanoelectrospray-tandem mass spectrometry
Author(s) -
Bin Ma,
Jing Meng,
Peter W. Villalta,
Rebecca J. Kapphahn,
Sandra R. Montezuma,
Deborah A. Ferrington,
Irina Stepanov
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep22375
Subject(s) - tandem mass spectrometry , chemistry , dna , retinal , mitochondrial dna , deoxyguanosine , adduct , deoxyadenosine , retinal pigment epithelium , dna damage , oxidative phosphorylation , macular degeneration , mass spectrometry , liquid chromatography–mass spectrometry , microbiology and biotechnology , chromatography , biochemistry , biology , ophthalmology , medicine , organic chemistry , gene
Age-related macular degeneration (AMD) is the leading cause of blindness among older adults in the developed world. Oxidative damage to mitochondrial DNA (mtDNA) in the retinal pigment epithelium (RPE) may play a key role in AMD. Measurement of oxidative DNA lesions such as 8-oxo-2’-deoxyguanosine (8-oxo-dG) and 8-oxo-2’-deoxyadenosine (8-oxo-dA) in diseased RPE could provide important insights into the mechanism of AMD development. We have developed a liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry method for simultaneous analysis of 8-oxo-dG and 8-oxo-dA in human retinal DNA. The developed method was applied to the analysis of retinal DNA from 5 donors with AMD and 5 control donors without AMD. In mtDNA, the levels of 8-oxo-dG in controls and AMD donors averaged 170 and 188, and 8-oxo-dA averaged 11 and 17 adducts per 10 6 bases, respectively. In nuclear DNA, the levels of 8-oxo-dG in controls and AMD donors averaged 0.54 and 0.96, and 8-oxo-dA averaged 0.04 and 0.05 adducts per 10 6 bases, respectively. This highly sensitive method allows for the measurement of both adducts in very small amounts of DNA and can be used in future studies investigating the pathophysiological role of 8-oxo-dG and 8-oxo-dA in AMD and other oxidative damage-related diseases in humans.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom