Visualization and quantification of deformation behavior of clopidogrel bisulfate polymorphs during tableting
Author(s) -
Xianzhen Yin,
Li Wu,
Ying Li,
Tao Guo,
Haiyan Li,
Tiqiao Xiao,
Peter York,
Ashwini Nangia,
Shuangying Gui,
Jiwen Zhang
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep21770
Subject(s) - tableting , visualization , deformation (meteorology) , p2y12 , clopidogrel , materials science , computer science , data mining , chemistry , composite material , biochemistry , aspirin
The deformation behavior of particles under pressure dominates the mechanical properties of solid dosage forms. In this study, the in situ 3D deformation of two polymorphs (I and II) of clopidogrel bisulfate (CLP) was determined to illustrate pressure distribution profiles within the tablet by the deformation of the crystalline particles for the first time. Synchrotron radiation X-ray computed microtomography (SR-μCT) was utilized to visualize and quantify the morphology of thousands crystalline particles of CLP I and CLP II before and after compression. As a result, the deformation was examined across scale dimensions from microns to the size of the final dosage form. Three dimensional parameters such as volume, sphericity, oblate and prolate of individual particle and distributions were computed and analyzed for quantitative comparison to CLP I and CLP II. The different degrees of deformation under the same compression conditions of CLP I and CLP II were observed and characterized quantitatively. The map of deformation degrees within the tablet illustrated the heterogeneous pressure distribution in various regions of the compacted tablet. In conclusion, the polymorph deformation behaviors demonstrated by SR-μCT quantitative structure analysis deepen understanding of tableting across dimensions from microns to millimeters for the macrostrcuture of tablet.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom