Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes
Author(s) -
Xiaohong Li,
Zhen Liu,
Ying Deng,
Shengli Li,
Dezhi Mu,
Xiaoxian Tian,
Lin Yuan,
Jiaxiang Yang,
Jun Li,
Nana Li,
Yanping Wang,
Xinlin Chen,
Kui Deng,
Jun Zhu
Publication year - 2015
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep14915
Subject(s) - gstp1 , odds ratio , genotype , glutathione s transferase , physiology , gene , genetics , medicine , nicotine , glutathione , biology , biochemistry , enzyme
Congenital heart defects (CHDs) arise through various combinations of genetic and environmental factors. Our study explores how polymorphisms in the glutathione S-transferase (GST) genes affect the association between cigarette smoke exposure and CHDs. We analysed 299 mothers of children with CHDs and 284 mothers of children without any abnormalities who were recruited from six hospitals. The hair nicotine concentration (HNC) was used to quantify maternal smoke exposure, and the maternal GSTT1, and GSTM1 and GSTP1 genes were sequenced. We found a trend of higher adjusted odds ratios with higher maternal HNC levels, suggesting a dose-response relationship between maternal smoke exposure and CHDs. The lowest HNC range associated with an increased risk of CHDs was 0.213–0.319 ng/mg among the mothers with functional deletions of GSTM1 or GSTT1and 0.319–0.573 ng/mg among the mothers with normal copies of GSTM1 and GSTT1. In addition, the adjusted odds ratio for an HNC of >0.573 ng/mg was 38.53 among the mothers with the GSTP1 AG or GG genotype, which was 7.76 (χ 2 = 6.702, p = 0.010) times greater than the AOR in the mothers with GSTP1 AA genotype. Our study suggests that polymorphisms of maternal GST genes may modify the association of maternal smoke exposure with CHDs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom