z-logo
open-access-imgOpen Access
Effects of hTERT on metal ion-induced genomic instability
Author(s) -
Antonino Glaviano,
Vijayashree Nayak,
Erik Cabuy,
Duncan Martin Baird,
Zhirong Yin,
Roger Newson,
Dariusz Ładoń,
Miguel A. Rubio,
Predrag Slijepčević,
Fiona M. Lyng,
Carmel Mothersill,
C. P. Case
Publication year - 2006
Publication title -
oncogene
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.395
H-Index - 342
eISSN - 1476-5594
pISSN - 0950-9232
DOI - 10.1038/sj.onc.1209399
Subject(s) - telomere , telomerase , genome instability , chromosome instability , telomerase reverse transcriptase , biology , dna damage , chromatid , dicentric chromosome , aneuploidy , oxidative stress , clonogenic assay , cancer research , micronucleus test , microbiology and biotechnology , apoptosis , genetics , chromosome , toxicity , medicine , karyotype , dna , endocrinology , gene
There is currently a great interest in delayed chromosomal and other damaging effects of low-dose exposure to a variety of pollutants which appear collectively to act through induction of stress-response pathways related to oxidative stress and ageing. These have been studied mostly in the radiation field but evidence is accumulating that the mechanisms can also be triggered by chemicals, especially heavy metals. Humans are exposed to metals, including chromium (Cr) (VI) and vanadium (V) (V), from the environment, industry and surgical implants. Thus, the impact of low-dose stress responses may be larger than expected from individual toxicity projections. In this study, a short (24 h) exposure of human fibroblasts to low doses of Cr (VI) and V (V) caused both acute chromosome damage and genomic instability in the progeny of exposed cells for at least 30 days after exposure. Acutely, Cr (VI) caused chromatid breaks without aneuploidy while V (V) caused aneuploidy without chromatid breaks. The longer-term genomic instability was similar but depended on hTERT positivity. In telomerase-negative hTERT- cells, Cr (VI) and V (V) caused a long lasting and transmissible induction of dicentric chromosomes, nucleoplasmic bridges, micronuclei and aneuploidy. There was also a long term and transmissible reduction of clonogenic survival, with an increased beta-galactosidase staining and apoptosis. This instability was not present in telomerase-positive hTERT+ cells. In contrast, in hTERT+ cells the metals caused a persistent induction of tetraploidy, which was not noted in hTERT- cells. The growth and survival of both metal-exposed hTERT+ and hTERT- cells differed if they were cultured at subconfluent levels or plated out as colonies. Genomic instability is considered to be a driving force towards cancer. This study suggests that the type of genomic instability in human cells may depend critically on whether they are telomerase-positive or -negative and that their sensitivities to metals could depend on whether they are clustered or diffuse.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here