z-logo
open-access-imgOpen Access
Activation of NF-κB following detachment delays apoptosis in intestinal epithelial cells
Author(s) -
Sen Yan,
Robbie R. Joseph,
Kirill V. Rosen,
Mauricio J. Reginato,
Amanda Jackson,
Norman Allaire,
Joan S. Brugge,
Christian Jobin,
Andrew W. Stadnyk
Publication year - 2005
Publication title -
oncogene
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.395
H-Index - 342
eISSN - 1476-5594
pISSN - 0950-9232
DOI - 10.1038/sj.onc.1208810
Subject(s) - anoikis , biology , apoptosis , nf κb , phosphorylation , kinase , iκbα , iκb kinase , microbiology and biotechnology , cancer research , programmed cell death , signal transduction , genetics
We reported earlier that IL-1beta, an NF-kappaB-regulated cytokine, was made by intestinal epithelial cells during detachment-induced apoptosis (anoikis) and that IL-1 was antiapoptotic for detached cells. Since surviving anoikis is a prerequisite for cancer progression and metastases, we are further exploring the link between anoikis and cytokines. Here we determined that multiple genes are expressed following detachment including a number of NF-kappaB-regulated products and therefore aimed to determine whether NF-kappaB signalling plays any role in regulating apoptosis. Using Western blotting, we detected that IkappaBalpha becomes phosphorylated immediately following detachment and that levels of phospho-IkappaBalpha peaked within 20 min. Phosphorylation of IkappaBalpha was followed by Rel A (p65) nuclear translocation. Increased NF-kappaB activity following detachment was confirmed using the detection of NF-kappaB-promoted luciferase gene expression delivered by adenovirus infection. Infection of cells with adenovirus expressing a super-repressor IkappaBalpha protein and pharmacological inhibitors of NF-kappaB resulted in the failure to phosphorylate IkappaBalpha, a more rapid activation of caspases and earlier apoptosis. We also detected that IkappaB kinase alpha (IKKalpha) and not IKKbeta became phosphorylated following detachment. Since IKKalpha is activated by NF-kappaB-inducing kinase (NIK), we overexpressed native NIK using an adenovirus vector that resulted in enhanced phospho-IkappaBalpha and nuclear p65 in detached cells compared to control detached cells but did not result in a significantly greater number of cells surviving to 24 h. We conclude that detachment directly activates NF-kappaB, which, in addition to launching an inflammatory cytokine wave, contributes to a delay in apoptosis in intestinal epithelial cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here