z-logo
open-access-imgOpen Access
LMW-PTP is a positive regulator of tumor onset and growth
Author(s) -
Paola Chiarugi,
Maria Letizia Taddei,
Nicola Schiavone,
Laura Papucci,
Elisa Giani,
Tania Fiaschi,
S. Capaccioli,
Giovanni Raugei,
Giampietro Ramponi
Publication year - 2004
Publication title -
oncogene
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.395
H-Index - 342
eISSN - 1476-5594
pISSN - 0950-9232
DOI - 10.1038/sj.onc.1207508
Subject(s) - biology , tyrosine phosphorylation , cell growth , protein tyrosine phosphatase , microbiology and biotechnology , cell adhesion , transfection , cancer research , phosphorylation , receptor tyrosine kinase , cell , cell culture , biochemistry , genetics
Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are an enzyme family that plays a key role in cell proliferation control by dephosphorylating/inactivating both tyrosine kinase receptors (such as PDGF, insulin, and ephrin receptors) and docking proteins (such, as beta-catenin) endowed with both adhesion and transcriptional activity. Besides being a frequent event in human tumors, overexpression of LMW-PTP has been recently demonstrated to be sufficient to induce neoplastic transformation. We recently demonstrated that overexpression of LMW-PTP strongly potentiates the stability of cell-cell contacts at the adherens junction level, which powerfully suggests that LMW-PTP may also contribute to cancer invasivity. Focusing on mechanisms by which LMW-PTP is involved in cancer onset and progression, the emerging picture is that LMW-PTP strongly increases fibronectin-mediated cell adhesion and mobility but, paradoxically, decreases cell proliferation. Nevertheless, LMW-PTP-transfected NIH3T3 fibroblasts engrafted in nude mice induce the onset of larger fibrosarcomas, which are endowed with higher proliferation activity as compared to mock-transfected controls. Quite opposite effects have been obtained with engrafted fibroblasts transfected with a dominant-negative form of LMW-PTP. Notably, in sarcoma extracts, LMW-PTP overexpression greatly influences the ephrin A2 (EphA2) but not PDGF receptor or beta-catenin tyrosine phosphorylation. The high association of dephosphorylated EphA2 overexpression with most human cancers and our observation that cell growth stimulation by LMW-PTP overexpression is restricted to the in vivo model, strongly suggest that LMW-PTP oncogenic potential is mediated by its EphA2 tyrosine dephosphorylating activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here