
Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion
Author(s) -
Arti Santhanam,
Alyson R. Baker,
Glenn Hegamyer,
Dawn A. Kirschmann,
Nancy H. Colburn
Publication year - 2010
Publication title -
oncogene
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.395
H-Index - 342
eISSN - 1476-5594
pISSN - 0950-9232
DOI - 10.1038/onc.2010.158
Subject(s) - lysyl oxidase , biology , cancer research , hypoxia (environmental) , cancer cell , breast cancer , programmed cell death , metastasis , cancer , apoptosis , microbiology and biotechnology , chemistry , extracellular matrix , biochemistry , genetics , organic chemistry , oxygen
Metastasis to bone, liver and lungs is the primary cause of death in breast cancer patients. Our studies have revealed that the novel tumor suppressor Pdcd4 inhibits breast cancer cell migration and invasion in vitro. Loss of Pdcd4 in human nonmetastatic breast cancer cells increased the expression of lysyl oxidase (LOX) mRNA. LOX is a hypoxia-inducible amine oxidase, the activity of which enhances breast cancer cell invasion in vitro and in vivo. Specific inhibition of LOX activity by beta-aminopropionitrile or small interfering RNA decreased the invasiveness of T47D and MCF7 breast cancer cells attenuated for Pdcd4 function. Most significantly, loss of Pdcd4 augments hypoxia induction of LOX as well. Conversely, overexpression of Pdcd4 significantly reversed the hypoxia induction of LOX expression in T47D cells attenuated for Pdcd4. However, Pdcd4 did not affect hypoxia-inducible factor-1 (HIF-1) protein expression or HIF-1-responsive element-luciferase activity in response to hypoxia, suggesting that Pdcd4 regulation of LOX occurs through an HIF-independent mechanism. Nevertheless, the loss of Pdcd4 early in cancer progression may have an important role in the increased sensitivity of cancer cells to hypoxia through increased LOX activity and concomitant enhanced invasiveness.