
Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure
Author(s) -
Jeffry L. Dean,
Chellappagounder Thangavel,
A. Kathleen McClendon,
Christopher A. Reed,
Erik S. Knudsen
Publication year - 2010
Publication title -
oncogene
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.395
H-Index - 342
eISSN - 1476-5594
pISSN - 0950-9232
DOI - 10.1038/onc.2010.154
Subject(s) - biology , cancer research , breast cancer , cyclin dependent kinase , carcinogenesis , kinome , cell cycle , cancer , cytostasis , cdk inhibitor , cyclin d1 , signal transduction , microbiology and biotechnology , genetics , cytotoxicity , in vitro
A hallmark of cancer is the deregulation of cell-cycle machinery, ultimately facilitating aberrant proliferation that fuels tumorigenesis and disease progression. Particularly, in breast cancers, cyclin D1 has a crucial role in the development of disease. Recently, a highly specific inhibitor of CDK4/6 activity (PD-0332991) has been developed that may have efficacy in the treatment of breast cancer. To interrogate the utility of PD-0332991 in treating breast cancers, therapeutic response was evaluated on a panel of breast cancer cell lines. These analyses showed that the chronic loss of Rb is specifically associated with evolution to a CDK4/6-independent state and, ultimately, resistance to PD-0332991. However, to interrogate the functional consequence of Rb directly, knockdown experiments were performed in models that represent immortalized mammary epithelia and multiple subtypes of breast cancer. These studies showed a highly specific role for Rb in mediating the response to CDK4/6 inhibition that was dependent on transcriptional repression manifest through E2F, and the ability to attenuate CDK2 activity. Acquired resistance to PD-03322991 was specifically associated with attenuation of CDK2 inhibitors, indicating that redundancy in CDK functions represents a determinant of therapeutic failure. Despite these caveats, in specific models, PD-0332991 was a particularly effective therapy, which induced Rb-dependent cytostasis. Combined, these findings indicate the critical importance of fully understanding cell-cycle regulatory pathways in directing the utilization of CDK inhibitors in the clinic.