z-logo
open-access-imgOpen Access
Near-infrared light–controlled systems for gene transcription regulation, protein targeting and spectral multiplexing
Author(s) -
Taras A. Redchuk,
Andrii A. Kaberniuk,
Vladislav V. Verkhusha
Publication year - 2018
Publication title -
nature protocols
Language(s) - English
Resource type - Journals
eISSN - 1754-2189
pISSN - 1750-2799
DOI - 10.1038/nprot.2018.022
Subject(s) - optogenetics , biology , phytochrome , transcription (linguistics) , microbiology and biotechnology , protein subcellular localization prediction , multiplexing , synthetic biology , gene , computational biology , biophysics , genetics , computer science , neuroscience , telecommunications , linguistics , red light , botany , philosophy
Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom