Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
Author(s) -
Brian J. Wainger,
Elizabeth D. Buttermore,
Júlia Teixeira Oliveira,
Cassidy Mellin,
Seungkyu Lee,
Wardiya Afshar Saber,
Amy J. Wang,
Justin K. Ichida,
Isaac M. Chiu,
Lee Barrett,
Eric A. Huebner,
Canan Bilgin,
Naomi Tsujimoto,
Christian Brenneis,
Kush Kapur,
Lee L. Rubin,
Kevin Eggan,
Clifford J. Woolf
Publication year - 2014
Publication title -
nature neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.403
H-Index - 422
eISSN - 1546-1726
pISSN - 1097-6256
DOI - 10.1038/nn.3886
Subject(s) - nociceptor , neuroscience , reprogramming , sensitization , trpv1 , transcription factor , biology , receptor , nociception , microbiology and biotechnology , medicine , cell , transient receptor potential channel , biochemistry , genetics , gene
Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes, but also the diversity of neuronal subtypes found in vivo and the pathophysiological changes that underlie specific clinical diseases. We identified five transcription factors that reprogram mouse and human fibroblasts into noxious stimulus-detecting (nociceptor) neurons. These recapitulated the expression of quintessential nociceptor-specific functional receptors and channels found in adult mouse nociceptor neurons, as well as native subtype diversity. Moreover, the derived nociceptor neurons exhibited TrpV1 sensitization to the inflammatory mediator prostaglandin E2 and the chemotherapeutic drug oxaliplatin, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy. Using fibroblasts from patients with familial dysautonomia (hereditary sensory and autonomic neuropathy type III), we found that the technique was able to reveal previously unknown aspects of human disease phenotypes in vitro.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom